找回密码
 立即注册(不支持数字)

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 7906|回复: 18

感应淬火基础知识(杨工整理的资料)

[复制链接]

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
发表于 2013-2-27 10:36:42 | 显示全部楼层 |阅读模式
        这是以前整理的资料,上传与此,供大家参考分享

感应热处理基础知识.doc.rar

34.71 KB, 下载次数: 236

评分

参与人数 2金钱 +38 收起 理由
wanggong + 20 感谢上传!
龟山淬火 + 18 谢谢回复!

查看全部评分

打赏楼主

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 275 天

[LV.8]以坛为家I

95

主题

2175

回帖

8905

积分

热处理专家组

积分
8905
发表于 2013-2-27 22:08:05 | 显示全部楼层
已下载,谢谢杨工分享!
回复

使用道具 举报

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
 楼主| 发表于 2013-2-28 09:28:43 | 显示全部楼层
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 1366 天

[LV.10]以坛为家III

227

主题

2万

回帖

5万

积分

超级版主

积分
58357
QQ
发表于 2013-2-28 09:47:01 | 显示全部楼层
孤鸿踏雪 发表于 2013-2-28 09:28
内容比较老旧,传上来是为了供新手参考的,您下载可能就浪费时间了 ...

杨工,虽然我下载了。可是打不开,看不到内容。急死我了。
热处理之家,我爱我家
回复

使用道具 举报

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
 楼主| 发表于 2013-2-28 09:48:09 | 显示全部楼层
吉祥如意 发表于 2013-2-28 09:47
杨工,虽然我下载了。可是打不开,看不到内容。急死我了。

       看来那纯粹是您自己的问题了,反求诸己吧
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 2410 天

[LV.Master]伴坛终老

198

主题

7042

回帖

3万

积分

版主

积分
34229
发表于 2013-2-28 09:52:29 | 显示全部楼层
吉祥如意 发表于 2013-2-28 09:47
杨工,虽然我下载了。可是打不开,看不到内容。急死我了。

word文档,怎么会打不开呢?

感应热处理基础知识
  1 频率分段
高频(电流)频率:100~500KHZ,常用200~300KHZ;
超音频(电流)频率:30~80KHZ,常用30~40KHZ;
中频(电流)频率:500~20000HZ,常用2500和8000HZ;
工频感应加热:不需变频机,直接取用于50HZ工业电网。
2 高频感应加热装置
高频感应加热装置又称高频炉或高频机,它实质上是一个大功率变频器,通过电子管振荡器将工频交流电变为大功率高频交流电,故又称为电子管式高频发生器。
目前,国产高频感应加热装置按其振荡功率有8、30、60、100、200KW等品种。
2.1 可控整流器
可控整流器的作用是将高压变压器输出的三相高压电整流成高压直流电,并且要求直流电压在一定范围内可控,以便在加热不同尺寸的工件时能相应改变振荡器的输出功率。
闸流管因具有功率大、能承受高压、管压降小、整流效率较高等优点,故20~200KW大功率高频加热装置一般都采用它作为可控整流器的整流元件。
闸流管可控整流器常用的栅极电压控制方法有交直流叠加控制和移相控制两种。
2.2 三相可控整流电路三种典型工作状态
(1)可控闸流管全部受控状态(α=180°)
(2)可控闸流管全不受控状态(α=30°)
(3)可控闸流管部分受控状态(30~180°)
2.3 高压硅整流器
高压硅整流器是在高压变压器高压侧用硅组作整流元件制作的整流器,是一种新型的大功率整流器。
2.4 电子管振荡器
振荡管又叫发射管,是高频振荡器的核心元件。大功率高频振荡管都采用真空三极管形式。
2.5 电子管主要参数
(1)内阻Ri:在栅压一定时,阳极电压增量△Ua与阳极电流增量△Ia之比,称为电子管内阻,即:Ri= ∣Ug=常数
(2)放大系数μ:保持阳极电流不变,阳极电压增量△Ua与栅极电压增量之比,称为振荡管的放大系数,即:μ= ∣Ia=常数
放大系数表明了栅压对阳极电流的控制能力比阳极电压对阳极电流的控制作用要强μ(3~100)倍。
(3)跨导S:在恒定的阳极电压下,阳极电流增量△Ia与栅极电压增量△Ug之比称为三极管的跨导,即S= ∣Ua=常数
跨导即为栅极特性曲线直线部分的斜率。它表示栅极电压对阳极电流的控制能力。S愈大,控制能力愈强。
以上三个参数Ri、μ、S互相关联,即μ=S·Ri
2.6 三极电子管的放大工作状态
(1)甲类工作状态:栅负偏压Eg小于截止栅负偏压Eg0放大器静态工作点为A1点,阳流导通角2θ=360°此状态在特性曲线直线部分,非线性失真小,直流功率耗损很大,放大效率很低;
(2)乙类工作状态:栅负偏压Eg2=Ego,静态工作点为A2点,阳流导通角2θ=180°,此状态非线性失真大,直流损耗小,效率较高;
(3)丙类工作状态:│Eg3│>│Ego│,2θ<180°,非线性失真很大,但直流损耗更小,效率更高。
2.7 电子管自激振荡
当不同频率的电流通过LC并联电路时,电路呈现不同的阻抗。只有频率刚好等于谐振频率的电流通过时,电路阻抗最大,此时电路处于谐振状态。谐振电路呈现的纯电性阻抗称为回路的等效外阻,用RD表示,其值由下式决定:
RD=
由于只有谐振时的阻抗最大,因此只有频率为谐振频率的电流ia通过LC振荡回路时产生的电压降最大,其值iaRD=μk。而其它频率的信号通过时回路呈现的阻抗很小,相当于短路,很容易通过。所以,无论何种复杂波形的电流通过LC振荡回路时,它总是选择揩振频率的成分,产生谐振频率的振荡,而将其他频率的分波滤掉。电子管自激振荡器的自激振荡过程就是利用了这一选频特性。
2.8 自激振荡条件
(1)相位条件:要维持振荡必须使反馈线圈的反馈电压ug和振荡回路电压uk同相位。
(2)振幅条件:正反馈太小也不能维持振荡,必须满足一定条件。通常将反馈电压ug和振荡回路电压uk之比 称为反馈系数(用β表示),β值越大,反馈量也越大。因电子管的电压放大倍数k= ,所以:k·β=1
要使自激振荡器正常工作,必须满足k·β≥1的条件。
2.9 双回路振荡
大功率高频振荡器多采用双回路自激振荡器,在双回路振荡电路中,第一槽路和第二槽路之间耦合程度借助于LS来调节,而第二槽路与感应圈则通过淬火变压器耦合。
淬火变压器又称高频变压器,它是一个无铁芯的空心降压变压器,一次线圈就是第二振荡回路的电感线圈,约10匝,二次线圈为单匝,即淬火感应器。
没有第二槽路的振荡器为单回路振荡器,其缺点是不能根据负载的变化调节回路的阻抗匹配,但回路耗损较少,有利于提高整机效率。
2.10 电子管振荡器的工作状态及其调整
电子管振荡器的工作状态对输出功率大小、电能利用效率及振荡管的使用寿命影响很大。
(1)最大功率输出的条件——阻抗匹配问题
振荡器等效外阻(Ro)与折合内阻(Rn)相等时,振荡器的输出功率最大,也就是所谓负载与电子管实现了匹配。
振荡器等效外阻与加热工件大小和第一与第二槽路和耦合程度有关。而折合内阻也不是常数,它受反馈系数影响。
(2)高效输出条件
三极电子管在丙类工作状态(│Eg3│>│Ego│,2θ<180°=时,振荡器的实际效率最高(可达60~80%);而乙类和甲类较低,分别为50~60%和25~30%。
(3)振荡器三种工作状态
①欠压状态:振荡管栅流比阳流小很多,可忽略不计,所以又叫无栅流或小栅流状态。只有栅压μg较小时,栅流才小,故称“欠压”。由于在欠压状态下,振荡管阳极损耗很大,因而效率低。严重的欠压会显著降低振荡管寿命,甚至有烧毁阳极的危险;
②临界状态:临界状态是指Ro=Rn,即等效外阻和振荡管折合内阻刚好匹配的状态。在一定的振荡电压(Ea)下,振荡器工作于临界状态时,振荡回路高频电压Ua1和Ia1最大,所以振荡功率最大,由于Ua1m大,Ea不变时,阳压利用系数ξ增大。这时,阴极电子在栅极上的分配比例增加,阳极耗损减小,因此效率也增高。临界状态是调整振荡器时要选取的工作状态。
③过压状态:当RD>Rn时,振荡回路高频电压Ua1增大而“过压”。由于“过压”,反馈系数不变时,栅压也“过压”。过压造成阳流显著减小,而栅流很大。故过压状态又叫大栅流状态。在过压状态,随着RD的增加,过压程度增加,振荡器效率将继续增大,但输出功率将减小。严重的过压,会使输出功率显著降低。
综小所述:振荡器的工作状态以欠压和强过压状态最为恶劣,它不仅不能充分发挥设备潜力,而且会增加电能耗损,降低设备(振荡管)使用寿命,影响产品质量;而临界状态和弱过压状态是输出功率大效率高的最佳工作状态,是高频感应加热作业中所要求的工作状态。
2.11 工作状态的调节
在高频感应加热工件时,振荡器的RD不可避免地要发生变化。如果工件在开始加热时阻抗是匹配的,则随着工件温度的升高,由于金属电阻率升高导磁率下降,焦耳热效率和磁滞热效应减小,亦即负荷降低,Rj减小,因而RD随之增大,振荡器将从临界状态向过压状态转化,高频输出功率下降。这种现象,在工件温度到达居黑点附近时表现特别明显。故而在加热工件过程中,相应于RD的增大,应随时注意减小反馈或加大耦合,以维持振荡器始终处于最佳工作状态。
振荡器工作状态的调节,归纳起来就是转动三个手轮,观察四个表。即用耦合手轮调节RD,用反馈手轮改变Rn,以实现阻抗的匹配;调节移相手轮以改变输出功率。反馈和耦合手轮的配合可保持一个不动,旋转另一个,或反之,或两者同时进行。在旋转耦合,反馈手轮的同时,应注视阳流、栅流表的指示,使两者保持一定比值。在旋转移相手轮改变阳极电压时,应注视直流千伏表的指示。还有一个高频电压表(即槽路电压表),供调整工件状态时参考。
3 超音频感应加热
超音频感应加热装置的工作电流频率一般为30~70KHZ。这个频率略高于音频上限(20KHZ),故称超音频。
超音频感应加热装置是上世纪60年代发展起来的一种先进表面加热设备,对中模数(2.5~6)齿轮、链条、花键轴、凸轮轴、曲轴的表面淬火特别适合,弥补了高频与中频对这些零件淬火时淬硬层分布不均匀的缺陷。
超音频感应加热装置的工作原理及结构、外形与高频感应加热装置相同,仅在振荡电路上有两个不同点:一是振荡器频率低,因此在振荡回路上安排的电容器量大;二是多采用单回路振荡电路。
4 双频感应加热装置
双频感应加热装置是指具有高频和超音频两段频率的感应加热装置。目前国产双频感应加热设备,其超音频频率为30~50KHZ,高频频率为90~150KHZ,高频频率虽比一般高频设备频率200~300KHZ要低,但生产实践表明:两种频率的加热效果差不多。在电路设计上,两个振荡回路通过专用闸刀开关转换。
5 中频感应加热装置
中频感应加热装置的电流频率通常为1000~8000HZ。它适用于加热层深3~16mm、工件直径大(20~500mm)的钢铁零件的表面淬火,亦可用于回火、正火、锻坯透热或熔炼金属。在汽车、拖拉机制造业中,曲轴和凸轮轴等零件的表面淬火多采用中频装置加热。
中频感应加热装置的中频电源有中频发电机(机式中频电源)和晶闸管中频电源两种。
5.1 中频淬火变压器
中频淬火变压器的作用是实现发电机与负载的匹配和降压。淬火加热用感应圈大多为单匝或双匝。为了操作安全和避免零件与感应圈之间电击穿而烧杯工件,感应圈上工作电压要求为15~100V的低压,而流过感应圈的电流都要求较大,以便在感应圈内建立强的交变磁场。但是,中频发电机的输出电压达375V或750V的高电压,为此,用中频淬火变压器降压。
中频感应加热的负载,一般是电感性负载,功率因数cosφ很低。频率为2500HZ的发电机,其功率因数cosφ通常为0.36~0.50;频率为8000HZ的发电机,其功率因数仅为0.2~0.3。为提高功率因数,通常在电感性负载两端并联若干电容器。若选择合适,使其组成谐振于中频电源频率的谐振电路,功率因数cosφ=1,发电机将输出最大的有效功率。
5.2 电容量与匝比的选择和调整
中频淬火加热时,电容量和匝比的选择和调整是一个很重要的问题。电容量和匝比调整得好,有利于发电机功率的利用和提高淬火质量。一般每加热一批工件,都应调整一次,以获得适合于加热该种零件所需要的电容量和匝比。
调整过程比较麻烦,因电容量和匝比互相影响,有时需要多次反复,才能达到满意效果。但无论多么复杂,功率因数cosφ等于或接近于1是判断电容量和匝比配合是否合适的基本标准和依据。其调整步骤大致如下:
(1)调整前,感应装置的电气、水冷等系统应处于正常状态。感应圈中必须放零件,不可在无负载情况下调整。
(2)初选匝比和电容量。依生产经验或感应器尺寸(内经和高度),初定匝比和电容量。一般感应器有效直径愈大,高度愈低,其阻抗愈大,为保持阻抗匹配,匝比应选小些,反之亦然。
电容量与匝比的调整方法:
(1)观察功率因数表指示值,若cosφ值超前,表明负载为电容性,应减小电容量;反之则相反。但由于钢制零件在加热过程中电阻率上升。导磁率下降,因而负载性质逐渐向电感性方向转移。故在实际调整中,开始加热时,一般先将回路调成电容性负载,即调到谐振点的电容量后,再过量补偿10~20%的电容量,使cosφ值为0.85~0.90(超前)。随着工件温度的提高,cosφ值由电容性逐渐接近于1。此时,功率表的读数正好等于负载电压与电流的乘积,表示电路已达到谐振状态。
(2)当不用电压自动调整装置时,保持励磁电流恒定,则可以根据负载接通前后电压表的读数来调整电容量。若接通负载后电压表读数下降,表示负载为电感性,应增加电容量;反之,若电压表读数上升,表示负载为电容性,应减小电容量;若接通负载前后电压变化小,表示电容量合适,电路接近谐振。
(3)当使用电压自动调整装置时,电容量的多少还可根据接通负载前后励磁电流表读数的变化来判断。接通负载后,励磁电流上升,表示负载为电感性,应增大电容量;反之,若励磁电流下降,表示负载为电容性,应减小电容量;若不变化,则表明处于谐振状态。
(4)调整匝比时可采用电机电压法和电机电流法来判断。在谐振状态下,如果匝比选择得合适,此时发电机电压和电流也都达到额定值,因而输出功率为最大。如果发电机已达额定值,而电压低于额定值,而发电机电流却很小,表示匝比过大,应减小初级绕组匝数;如果电流超过额定值,而电压低于额定值,则表示匝比过小,应增加变压器初级绕组匝数。匝比改变后,功率因数将发生变化,需再次选择电容量,使cosφ=0.85~0.90(超前)。
(5)若不需设备输出最大功率,匝比可不必严格选择,调节微动激磁电流,使输出功率达到要求值即可,但cosφ值仍需调整。
5.3 晶闸管中频电源
晶闸管中频电源是利用晶闸管元件的静态开关特性,直接将工频转变为中频的电源,用来熔炼金属或加热工件。
晶闸管中频电源的基本原理是通过整流器先把工频交流电整流成直流,再经滤波器滤波,最后再将直流电变换成单相中频交流电,以供给负载。把直流电变换成中频交流电的装置称为逆变器。
逆变器的负载是感应圈,它具有较大的电感。因此,负载除消耗有功功率外,还消耗比有功功率大数倍的无功功率。这样大的无功功率,若由电网负担,则电网容量则非常庞大,很不经济,故必须用能提供无功功率的中频电容器进行补偿。根据中频电容器补偿的方法,逆变器有两种形式:电容器与感应器串联时称为串联逆变器,反之则称为并联逆变器。一般说来,并联逆变器因为对负荷变化的适应性比串联逆变器好,运行比较可靠稳定,宜于做一般用途的中频感应电源,目前应用较多。
6 高频感应加热设备检修实例
(天津金能电力电子有限公司  张传旭)
摘要:高频感应加热设备中既有高压电路,又有低压电路;其控制电路中有继电器控制器、分立半导体元件、集成电路,近年来又开发了数字、微机等控制系统。因此在分析高频感应加热设备的故障时,不要只看表面现象,而是要寻找内在原因,从根本上予以解决。高频设备的品种多,故障情况也千变万化,应掌握分析和判断故障的方法。通过具体例子介绍了这种理念。
关键词:高频感应加热设备  电路  控制系统  故障
1电子管感应加热设备常见故障
[例1]设备型号码  GP100-C系列100KW(GGC80-2)等
制造商  国内各高频设备生产厂
故障现象  接通高压时过流跳闸
故障分析与解决  对于这种现象,故障所包含的范围是较广的,可分为低压电路和高压电路两部分。低压部分是指从交流接触器到高压变压器这一段线路中的输电线有无故障,过电流继电器的整定电流有无问题,这些方面容易直观检查出来。高压部分是指高压元件绝缘击穿造成的过流,像高压变压器,高压硅桥、高压旁路电容,高压压敏电阻,阳极阻流圈,阳极隔直流电容器及振荡管等元件的损坏都会造成这种故障。对此首先是直观检查,如经过仔细观察未发现可疑之处,下一步是用电压较高的摇表来测量高压对地的绝缘电阻。考虑到高压元件的绝缘电阻应是很高的,但设备上直流高压表的电阻只有6MΩ,而振荡管阳极对地的水阻一般小于1 MΩ,因此测前必须把这两部分的连线断开。可先拆除阳极阻流圈到振荡管阳极的连线,用摇表检测时高压对地应为6 MΩ。在拆除高压表阻的连线,并擦净高压对地各绝缘支柱上的尘埃,再用摇表测量高压对地的绝缘电阻,其值应在500 MΩ左右。若发现绝缘不良,则可逐个断开各元件,分别用摇表检测,找出故障所在。但是摇表的检测电压(如为2500V)只是工用电压的六分之一,所以用摇表不一定能找出问题。此时若手头别无其它电压更高的测试手段,就只得用加高压观察的办法了。每次过流冲击,对高压变压器、整流桥、振荡管、交流接角器等都会带来一定的损害,因此要尽量减少过电流的次数。试验先从第一个高压元件开始,把高压变压器高压侧的连接线断开后,试接通高压。对某些合闸时激磁电流较大的变压器,又无调压设备,虽然在合闸时跳闸的次数多些,但有时还是能合上闸的,说明高压变压器无故障;对膈闸困难的问题,宜采用分两档合闸的办法或增加阻容吸收装置来解决。如高压变压器无问题,就接上整流元件,断开从整流柜到高压柜(振荡柜)的直流高压连线,再通电试验。此时应注意观察变压器、整流桥、电容器等元件有无爬弧、放电现象。如此一段一段往下试,最后检测振荡管。如属振荡管内真空度降低,承受不了高压,则再加上阳极高压后会出现很大的阳流,阳流表会有指示(真空度不佳的管子,通过老炼有可能恢复正常)。对于有调压装置的设备,检修应分两部分进行,首先检查调压部分,后检修振荡部分。调压器检修过程如下:
摘去可控硅调压器与升压变压器3根连线处理好绝缘。用6只(3只)200W(100W)/220V灯泡星形连接,接在调压器的输出端。调压旋钮置“0”位,调压器控制方式为“开环”。合闸按正常程序送高压启动,微调高压调谐电位器(高压调谐旋钮),6只(3只)灯泡由暗逐步到亮,平滑无闪烁为正常。如亮度不均或跳变,在保证输入相序正常的情况下,了解分析调压器故障,检修调压控制板及可控硅。
如上所述,调压器正常,但正常工作中掉闸,在振荡电路正常的情况下,可考虑调压器的过流点是否合适。如三相电流不平衡时,应考虑可控硅性能是否变化。检查方法是设备以电子管零电流为负载,用示波器分别监测6只可控硅上的角发波形,在逐步增大阳流时如触发波形幅值低落或者畸变,说明该可控硅(晶闸管)已坏,应予更换。在更换损坏的元件时,必须达到或超过原来的质量标准,以免影响电路性能和安全运行。
[例2]设备型号  GP100-C系列(GGC80-2)
制造商  国内各高频设备生产厂
故障现象  按加热按钮工件不加热,设备不起振,有阳流无栅流
故障分析与解决  对于这种现象,故障所包含的范围依然是较广的。仍可分为可分为低压电路和高压电路两部分。低压部分是指从交流接触器到高压变压器这一段线路中的输电线有无故障,过电流继电器、栅极电路有无问题,这些方面是容易直观检查出来的。
高压部分是指高压元件绝缘击穿造成的不起振;对于三回路高频设备,多数不起振是因为第二槽路电容器损坏造成。检查这种故障时宜采用分段方法,将第二槽路断开(藕合线圈到第二槽路电容器的连接铜管断开),按正常操作程序,用第一槽路工作,看此时设备工作是否正常。如此时设备能工作(起振),证明故障出现在第二槽路,这时应重点检查第二槽路的电容器是否损坏,淬火变压器是否短路等。反之,则应检查第一槽路元件是否损坏,振荡管、旁路电容器等是否正常。在更换损坏的元件时,必须达到或超过原来的质量标准,以免影响电路性能和安全运行等问题。
[例3]设备型号  GP100-C系列(GGC80-2)
制造商  国内各高频设备生产厂
故障现象  设备不起振,有阳流无栅流
故障分析与解决   用例2中的方法检查,故障出现在第一槽路至高压电路中,仔细检查发现电子管灯丝旁路电容器损坏(无容量),更换后设备运行正常。灯丝电容器在振荡电路中起高频交流旁路作用。当电容器出现故障的时候,高频旁路电流失去通路,振荡器自然就停止振荡了。灯丝旁路电容宜选用损耗小的云母电容,纸介油浸电容由于绕制圈数多,感抗大,损耗大,很容易因发热而损坏。
[例4]设备型号  GP100-C系列(GGC80-2)
制造商  国内各高频设备生产厂
故障现象  设备不起振,无阳流无栅流
故障分析与解决对于这种现象,故障所包含的范围大部分在高压部分,首先检查调压器工作是否正常,如工作正常,高压0~13.5KV连续可调,则重点放在高压是否加在电子管阳极上,经检查发现阳极阻流圈断路,造成电子管失去工作电压,产生停振。出现有高压无阳流时,多数是高压没加到电子管阳极上。如高压加到电子管阳极上,正常情况下,按加热按钮后,电子管将呈现二极管状态,会有阳流出现。
[例5]设备型号  GP100-C单回路系列(GGC80-2)等
制造商  国内各高频设备生产厂
故障现象  不起振、高压正常有阳流无栅流
故障分析与解决  对于这种现象,在检查低压线路无故障时,重点应检查振荡电路,经用摇表检查槽路电容器、隔直流电容器、电子管、旁路电容器等均无故障,经询问,该设备停机时工作正常,但过几天在开机时即出现此现象。分析认为此设备为单回路设备,只有一个LC振荡回路,停机几天后出现故障,多数是LC振荡回路接触不良造成。仔细检查各连接点,重新打磨紧固后,开机试车一切正常(此故障多数出现在感应器与淬火变压器的连接处触不良)
[例6]设备型号  GP100-H单回路系列(GGH80-4)等
制造商  国内各高频设备生产厂
故障现象  槽路电容器容易击穿
故障分析与解决  本设备是电容反馈单回路电路的电子管振荡器。槽路电容器容易击穿的原因有以下几方面:(1)槽路电容器的比例配置不当,槽路电容由C1,C2,C3,C4组成,其中C3、C4为反馈电容,其容量在槽路总容量中所占的比例甚小,单从C1和C2的关系已知C1上的高频电压和阳极基波电压相近。对于C1,C2,容量大的则所承担的电压就低,反之则高,即容易击穿。因此在调整单回路时,不要使C1和C2的电容量相差太多。(2)振荡器在过压状态工作时,槽路电压比较高,这也是槽路电容器容易击穿的一个原因。因此振荡器不宜在强过压状态下工作。(3)高压电源的过压状态,也是击穿电容器的一个原因,这种情况多发生在负载突然断开的瞬间。因此在电源部分应该装设过压吸收装置,如压敏电阻器、组容吸收装置等。(4)设备灰尘过多,过潮、连接铜排松动等。这里要说明的是,单回路设备槽路电容器所承受的电压比较高,如使用饼式电容器,建议两只串联使用,并定期清扫保养。
[例7]设备型号  GP100-C系列(GGC80-2)等
制造商  国内各高频设备生产厂
故障现象  高压表指示偏高或偏低
故障分析与解决  高压指示异常的原因是:控制系统有故障,造成失控;阳极电压表降压电阻间跳弧,或电阻变值;电表高频旁路电容器开路。这种故障在设备振荡时读数异常,设备停振时恢复正常,很容易辨认。出现此故障时可用万用表检查,更换损坏的元件即可(多数为阳极降压电阻10W1 MΩ或5W2 MΩ损坏)。
[例8]设备型号  GP60-CR13-1系列(GGC50-2)等
制造商  国内各高频设备生产厂
故障现象  接通加热后两只管子中只有一只管子振荡,而另一只管子无栅流不振荡
故障分析与解决  本设备用两只FU-431S作并联振荡,已知两只管子中有一只管子(G8)工作正常,说明故障与两管共用的阳极阻流圈、负压整流器等部分无关,重点检查G9的有关部分。首先观察G9灯丝亮度是否正常。再在阳压为斗压时接通加热,观察阳压表的指示。可能会有两种情况:(1)G9的阳流为零。如果G9的阳极或阴极的连线未脱落,则此故障可肯定为G9栅极的直流回路不通。即当加热接通时CJ5吸合,从CJ5常开接点到栅流表、阳流表至地的这条通路中有中断之处,使得G9栅极对地无直流通路,栅极上的高频电压为零,因此无栅流也无阳流。(2)G9的栅极表为零,阳流表为0.3A左右。已知G8工作正常,所以阳极槽路元件不会有问题。反馈电压由C11和C12分别送到两个振荡管的栅极。判断此故障为栅极无高频激励电压,可能是C12断路,或者是从C12到G9栅极的连线有断脱之处。此时G9相当一只二极管,故只有阳流无栅流而不能振荡。
[例9]设备型号  GP60-CR13-1系列(GGC50-2)等
制造商  国内各高频设备生产厂
故障现象  接通加热后两只管子均有阳流、无栅流不振荡
故障分析与解决  此例与上例不同之处在于两管同一症状,都不振荡。判断故障是在两管共用的电路,如阳极槽路或反馈电路等部分。或者虽属其中一个管子的元件损坏,但会影响到另一只管子的工作,分析故障在下述三个方面:(1)槽路有电容器击穿短路会造成停振。(2)振荡管栅极和阴极碰极短路造成停振。(3)振荡器耦合过紧会造成停振。(4)防寄振电容击穿短路会造成停振。(5)栅极反馈电路中断,使反馈能量送不到两管的栅极会造成停振。出现故障时应认真检查,更换故障元件。
[例10]设备型号  GP100-C、GP60-C、GP30-C、GGC系列等
制造商  国内各高频设备生产厂
故障现象  设备切断加热后,操作者的手碰到感应器时有触电的感觉,但阳流表和栅流表均无指示
故障分析与解决  此类设备是在振荡管栅极上控制加热接通或断开的,切断加热时把振荡管栅极的直流回路断开,并在栅极上加封锁负压,使振荡管停振。此时管子阳极上虽仍有阳极高压,但有阳极隔直流电容器、淬火变压器初、次级线圈的阻隔,而且还有淬火变压器一次线圈接地保护,因此直流高压决不会传到感应器上使人触电。使人触电的原因可肯定唯有高频电压存在所致。经仔细检查栅极电路,发现作负压整流的二极管损坏,无负压输出。至此可分析出故障的原因是由于,当切断加热后,振荡管的栅极上没有封锁负压,但阳压仍加着,反馈电路也是完好的,栅极的直流回路虽被切断,但栅极对地存在漏电电阻。此时栅极受到反馈电压的激励后仍会产生振荡。但当栅流流过高阻值的漏电阻时,会产生很高的负偏压,使振荡停止。经过一段时间后,负偏压从漏电电阻上泄放完了,于是又会产生第二次振荡。这种周期性的衰减振荡时间很短,平均电流很小,所以在阳流表和栅流表上都看不出来,但人体却能感觉到。这种间隙振荡对操作人员是不安全的,因此必须定期对这部分电路进行检查。
[例11]设备型号  GP100-C、GP60-C、GP30-C、GGC系列等
制造商  国内各高频设备生产厂
故障现象  设备存在寄生振荡:(1)阳、栅极上的防寄振电阻严重发热,甚至烧毁。(2)输出功率很小或者无。(3)某些元件过热严重。(4)在一些低电压的部位,反常地出现很高的电压,造成打火放电。(5)仪表指示反常。
故障分析与解决  当设备发生寄振时,首先要判断出寄生振荡形成的部位的属于哪种频率。从元件发热的情况来判断,如果是超高频寄振,则回路的连线将发热严重。如属于低频寄振,则阳、栅极阻流圈将严重发热。对于超高频寄振可以在振荡管栅、阴极之间并联一只电容。譬如对于工作频率为400 kHz的设备,在其振荡管的栅极、阴极之间并联一只容量为500PF的电容器,它对于50mHz的寄振回路呈现出的容抗只有3Ω,相当于短路。一般只在栅极上装设L1和R1,L1的电感量和R1的阻值要根据工用频率和寄振频率来考虑。例如工作频率为400kHz,寄振频率为40mHz时,选L1为2.5μH,R1为1000Ω。若工作频率不变,寄振频率为4mHz时,选L1为2.5μH,R1为33Ω。当遇到强烈寄振时,可以在振荡管的阳极上也装上抑制寄振的元件L2和R2,R2的阻值要比R1小,而功率要大。L2的电感量要小于L1。另振荡器的接地点很重要,感应加热用的振荡器都采用阴极接地的方式。接地应严格按照使用说明书的要求安装,重复接地电阻要小于4Ω。(出现寄振时,较方便的解决办法是改变振荡管阴、栅极间电容器的容量)。
[例12]设备型号  GGC25-4(30KW电子管高频设备)
制造商  天津市金能电力电子有限公司
故障现象  加热启动、停止过程中,不定时出现过流保护现象
故障分析  此设备能够正常工作,只是在启动、停止时偶尔出现过流现象,证明主电路工作正常,可控硅调压器工作也基本正常。出现过流现象的主要原因是由于启动、停止的瞬间,加热接触器电磁线圈在吸合或释放的瞬间产生了强大的电磁场,干扰了可控硅调压器的同步电路,使触发电路产生了误触发,由此引起过流。
解决方案:
(1)简单的方法是在加热接触器线圈两端并接一个吸收电容器(CJ41-4uF/400V)。
(2)KWY-4调压器电路31C2(LM311)的7角与69号(地)两端并接一个50 uF/25V的电容器。3K3(继电器)两端并接一个10uF/25V的电容器。
(3)采取软启动方法
方法一  原电路不动,在KWY-4板的给定信号中(电位器的中心头)接入一个继电器或钮子开关的常开触点(继电器或钮子开关需另行安装),工作顺序依然为启动灯丝一高压一加热一启动新安装的继电器或钮子开关。
方法二  将原电路的栅负压电路去除(断开KA4加热接触器的常闭点,短接常开点),将KWY-4板的给定信号(电位器的中心头)接入到原KA4的接触器常开点即可。
建议用户采取(3)软启动方法,其优点是高压整流变压器在加热时工作,不工作时不带电,减少了变压器的空载损耗,既节约了电能又延长了电子管的的寿命。不加热时没有高压,安全可靠。运用此方法可节电、降耗,延长设备使用寿命。
[例13]设备型号  GGC25-4(30KW电子管高频设备)
制造商  天津市金能电力电子有限公司
故障现象  高压启动后,电位器调一点,高压表指示即到头
故障分析  此故障主要出现在反馈电路上,影响到调节器。此电路的工作原理是当给定电压和反馈电压同时送到调节器的输入端,其输出送到3F2的第二级输入端,输出为UK送到角发器。第一级输出由3RW3进行负值限幅,限幅值来UKm,当反馈电压Ufu小于或大于Ug时,调节器工作UK,随之变大或UK的变化又引起触发器的输出UC高频方波宽度变化,从而控制可控硅的触发角变化,直至Ufu2=Ug为止。达到高压输出稳定。当失去反馈电压后,调节器输出高电平,触发器全角导通,高压表将指示到头。
解决方案  重点检查高压反馈电路和KWY-4的反馈电路,多数为高频设备的高压反馈电阻烧蚀(5W2MΩ)断路或KWY-4板反馈电路的晶体管、电阻、电容、变压器等损坏。此时应更换损坏器件。如高压反馈电阻损坏又没有备件,应急方法是将损坏电阻短路或将KWY-4调压板开环运行。
[例14]设备型号  GGC25-4(30KW电子管高频设备)
制造商  天津市金能电力电子有限公司
故障现象  高压启动后,调电位器高压表指示偏小或偏大
故障分析  此故障与上例类似,只是器件损坏程度不同。
解决方案  重点检查高压反馈电路,多数为高频设备的高压反馈电阻阻值变大或变小,此时应更换损坏器件。如高压反馈电阻损坏又没有备件,应急方法是将损坏电阻短路或将KWY-4调压板开环运行(用多只小功率电阻通过串联的方法达到原电阻要求值也可)。
[例15]设备型号  GGC25-4GP30-C3(30KW电子管高频设备)
制造商  天津市金能电力电子有限公司
故障现象  按高压按钮调谐高压时,灯丝电压降低
故障分析  引起灯丝电压降低的原因不外乎为灯丝变压器损坏、变压器谐振电容损坏、电子管损坏、供电电源故障。
解决方案  经外观检查,无明显的损坏迹象,用万用表检查变压器、电容器、电子管均无损坏。按正常程序启动设备,按高压按钮调谐高压,灯丝电压降低。用万用表检查可控硅输出端,发现三相电压严重不平行,进一步检查可控硅初级三相电压平行,从而断定引起灯丝电压降低的原因为调压系统电源故障。仔细检查故障是由于A项可控硅损坏(阴极与触发极开路),造成缺相。更换可控硅后设备运行正常。此现象在其它型号设备中也有发生。有时因为触发电路发生故障,造成少触发也将出现此现象。
[例16]设备型号  GGC25-4(30KW电子管高频设备)
制造商  天津市金能电力电子有限公司
故障现象  按加热按钮后,灯丝电压降低,设备过流保护
故障分析  引起灯丝电压降低的原因不外乎为灯丝变压器损坏、变压器谐振电容损坏、电子管损坏、供电电源故障。
解决方案  经外观检查,无明显的损坏迹象,用万用表检查变压器、电容器、电子管均无损坏。将供电子管的直流高压线从阳极阻流圈处拆除(电子管不接高压)。按正常程序启动设备,按加热按钮此时不再过流,灯丝电压依然降低,用万用表检查可控硅输出端,发现三相电压严重不平行,进一步检查可控硅初级三相电压也严重不平行,从而断定引起灯丝电压降低的原因为供电电源故障。仔细检查故障是由于给设备供电的空气开关触点烧蚀引起接触不良,大电流时造成缺相。更换开关后设备运行正常。此现象在其它型号设备中也有发生。有的开关触点烧蚀不严重,轻载或小功率时设备能正常运行,重载或大功率时出现上述现象。
[例17]设备型号  GGC25-4(30KW电子管高频设备)
制造商  天津市金能电力电子有限公司
故障现象  按加热按钮后,灯丝电压降低,此现象在其它型号设备中也有发生
故障分析  引起灯丝电压降低的原因不外乎为灯丝变压器损坏、变压器谐振电容损坏、电子管损坏、供电电源故障。
解决方案  经外观检查,变压器、电容器、电子管无明显的损坏迹象,用万用表检查变压器、电容器、电子管均无损坏。将供电子管的直流高压线从阳极阻流圈处拆除(电子管不接高压)。按正常程序启动设备,按加热按钮,灯丝电压依然降低,用万用表检查可控硅输出端,发现三相电压严重不平行,进一步检查可控硅调压器,发现接灯丝变压器的那一相电压明显偏低,从而断定引起灯丝电压降低的原因为供电电源故障。仔细检查设备安装情况,发现供电电源的零线没有接到设备上,将零线接好后设备运行正常。此故障是因为用户供电系统装有漏电保护器,而本设备为四合一供电,即保护零、工作零共用,此系统不能使设备正常运行。为使设备正常运行,用户强行将漏电保护器至设备的零线拆除。设备中电子管灯丝变压器是单相220V供电的,缺少零线后自然输出电压会降低(设备重复接地部分不符合要求)。正确的做法应该将高频设备改为三相五线制供电,工作零线、保护零线分开(即三相五线制)。这里强调一点,在同一供电系统中决不允许一部分用电设备接零保护,而另一部分用电设备接地保护。
[例18]设备型号  GP/200-C、 GP100-C、GP60-C、GP30-C、GGC系列等
制造商  国内各高频设备生产厂
故障现象  启动加热数分钟后电子管灯丝旁路电容即损坏
故障分析  引起电子管灯丝旁路电容器损坏的原因主要为大电流通过电容器,造成电容器超载损坏。此类设备在按加热按钮以前均正常,即设备起振后损坏电容器。这证明有很大的高频电流通过灯丝电容器,根据原理图分析,只有阴极电路对地失去通路才会有以上现象,应重点检查振荡后的电路。
解决方案  经检查发现阳极电流表对地端虚接,造成阳流表对地开路,高频阳极电流失去通路,高频阳极电流强行通过灯丝,阴极旁路电容对地形成通路,引起电容器超载损坏。重新将阳流表对地端接好,设备运行正常。
[例19]设备型号  GP10-C3系列等
制造商  天津市高频设备厂
故障现象  有阳流,无栅流,调节反馈不起作用
故障分析  仔细检查发现电子管灯丝旁路电容器损坏(无容量),更换后设备运行正常。灯丝电容器在振荡电路中起高频交流旁路作用。当电容器出现故障的时候,高频旁路电流失去通路,振荡器自然就停止振荡了。灯丝旁路电容宜选用损耗小的云母电容,纸介油浸电容由于绕制圈数多,感抗大,损耗大,很容易因发热而损坏。
解决方案  更换损坏的元器件
[例20]设备型号  GP10-C3系列等
制造商  天津市高频设备厂
故障现象  有阳流,无栅流,调节反馈不起作用
故障分析  对于这种现象,故障所包含的范围依然是较广的。可分为低压电路和高压电路两部分。低压部分是指从交流接触器到高压变压器这一段线路中的输电线有无故障,栅极电路有无问题,这些方面是容易直观检查出来的。
高压部分是指高压元件绝缘击穿造成的不起振。此类设备的故障多数是槽路电容器击穿损坏,用2500V的摇表便能检查出来。如无摇表可采用替换法或摘除法进行检查。
解决方案  更换损坏的电容器
[例21]设备型号  GP30-C3、GP10-C3系列等
制造商  天津市高频设备厂
故障现象  启动高压或加热后跳闸
故障分析  对于这种现象,故障所包含的范围主要有:高压部分、振荡部分。首先检查高压部分的整流变压器、整流硅桥、阳极阻流圈、电子管。振荡部分检查栅极电路、阳极电路、槽路电容、旁路电容等,以上器件用摇表或万用表即能检查出故障器件。本例故障为整流变压器的高压侧线包对地短路。
解决方案  更换损坏的变压器线包。对于潮湿地区建议使用油浸变压器,或对变压器进行防潮处理。
[例22]设备型号  GP100-C3、GP60-C3、GP30-C3、GP10-C3系列等
制造商  国内各高频设备生产厂
故障现象  高频冷却水带电,手触到水后有麻电感觉
故障分析  对于这种现象,故障所包含的范围主要有:高压水冷部分、振荡水冷部分,首先检查高压水冷系统,没有发现故障。在检查振荡水冷部分时,发现用做振荡管水阻的水管过短且没有接地(电子管水套进出口用水管直接接到水池里)。由于水阻过小造成设备出水电压没有降到安全值,使水中带电。此现象将十分危险,必须立即解决。
解决方案  加长水阻,水管经设备接地后入水池。阳极水阻的经验长度:水套的排水管应采用绝缘良好的材料并有足够的长度,以保证安全。一般来说阳极高压为多少千伏,排水管的最短长度就需多少米。例如阳极高压为12.5KV,其排水管至少应有12.5m,才能确保安全。
[例23]设备型号  GP100-C3、GP60-C3、GP30-C3、GP10-C3系列等
制造商  国内各高频设备生产厂
故障现象  高频冷却水出水水温过高(超过60℃)
故障分析  对于这种现象,故障所包含的范围主要有:水冷部分。首先检查供水压力(水压保证在2kg/㎝2左右)、流量是否符合要求,水值、水电阻率是否符合要求(电阻率不得低于4kΩ/㎜2)。设备是否匹配、是否超功率(负荷)运行。
解决方案  以上各项出现问题都将引起水温过高,应对症处理,调整不合理的地方。
2交流调压器检修流程
2.1 KWY-Ⅲ型可控硅调压柜检修流程
摘去可控硅调节器压器与升压变压器3根连线处理好绝缘.用6只(3只)200W(100W)/220V灯泡接成星形连接,接在调压器的输出端。调压旋钮置“0”位,调压器控制方式为“开环”(TJD调节板面板开关搬到开环位置)。合闸按正常程序送高压启动,如果将灯泡星点接地,送高压后3只灯泡应为110V电压的亮度,此时说明调压器整流二极管正常。否则应检查整流二极管。微调高压调谐电位器(高压调谐旋钮),6只(3只)灯泡由不亮到暗再逐步到亮,平滑无闪泺为正常(注意,此时灯泡星点不接地)。如亮度不均或跳变,在保证输入相序正常下,了解分析调压器故障,检修调压控制板及可控硅。调压板易损件为:三极管3DK12、3DK4、3DG6,集成电路LM324、555,稳压块7812、7912、317。保险管0.5A。
2.2 KWY-4型可控硅调压柜检修流程
接去可控硅调压器与升压变压器3根连线处理好绝缘.用3只200W(100W)220V灯泡星形连接,接在调压器的输出端。调压器旋钮置“0”位,调压器控制方式为“开环”(KWY-4调节板左端开关搬到开环位置)。合闸按正常程序送高压启动,微调高压调谐电位器(高压调谐旋钮),3只灯泡由不亮到暗再逐步到亮,平滑无闪烁为正常(注意,此时灯泡星点不接地)。如亮度不均或跳变,在保证输入相序正常下,了解分析调压器故障,检修调压控制板及可控硅。为方便用户检修,将KWY-4主要集成电路介绍给大家。
2.3 KJ004可控硅移相电路简介
KJ004可控硅移相触发器电路适用于单相、三相全控桥式供电装置中,用作可控硅的双路脉冲移相触发。KJ004器件输出两路相差180度的移相脉冲,可以方便地构成全控桥式触发器线路。该电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、对同步电压要求低,有脉冲列调制输出端等功能与特点。
电路工作原理  该电路由同步检测电路、锯齿形成电路、偏移电压、移相电压、移相电压及锯齿波电压综合比较放大电路和功率放大电路四部分组成。电原理为:锯齿波的斜率决定于外接电阻R27、RW3流出的充电电流和积分电容C8的数值。对不同的移相控制电压V,只要改变权电阻R32、R33的比例,调节相应的偏移电压V,同时调整锯齿波斜率电位器RW3,可以使不同的移相控制电压获得整个移相范围。触发电路为正极性型,即移相电压增加,导通角愈大。KJ004的同步电压为任意值。如整形电路UA741损坏,应急情况下可将交流同步电压直接接到KJ004的同步输入端8角。
KJ004管脚说明及电参数列于表1。
表1KJ004管脚说明
Table1  Explanation on Kj004baes pin
功能
输出
锯齿波形成
-VEE
(1K )
同步输入
综合比较
微分阻空
封锁调制
输出
+V
脚号
1
2
3   4
5
6
7
8
9
10
11 12
13 14
15
16
电参数(1)电源电压:直流+15V、-15V,允许波动±50%(±10%时功能正常)。(2)电源电流:正电流≤15mA;负电流≤10mA。(3)同步电压:任意值。(4)同步输入端允许最大同步电流:6 mA(有效值)。(5)移相范围170O(同步电压30V,同步输入电阻15k )。(6)锯齿波幅度:≥10V(幅度以锯齿波平顶为准)。(7)输出脉冲:①宽度:400µS~2ms(通过改变脉宽容元件达到)。②幅度:≥13V。③KJ004最大输出能力100mA(流出脉冲电流)。④输出管反压:BV≥18V(测试条件Ie≤110µA)。(8)正负半周脉冲相位不均衡≤±3°。(9)使用环境温度为四级:C:0~70℃; R:-55~85℃; E:-40~85℃; M:-55~125℃。KC004、KC009、KJ004、KJ009均可互换。
2.4 KJ041 六路双脉冲形成器
KJ041六路双脉冲形成器是三相全控桥式触发线路中必备的电路,具有双脉冲形成和电子开关控制封锁功能。使用2块由电子开关控制的KJ041电路组成逻辑控制,适用于正反组可逆系统.
电路工作原理  KJ041电路是脉冲逻辑电路。当把移相触发器的触发脉冲输入到KJ041电路的1~6端时,由输入二极管完成“或”功能,形成补脉冲,再由T1-T6电流放大分6路输出。补脉冲按+A~-C,-C~+B,+B~-A,-A~+C,+C~-B,-B~+A顺序列组合。7脚是电子开关,当控制7端接逻辑“0” 电平时截止,各路输出触发脉冲。当控制7端接逻辑“1”电平(+15V)时7导通,各路无输出触发脉冲。KJ041 6路输出端如果接3DK4作功率放大,可得到800mA的触发脉冲电流。
KJ041管脚说明及电参数列于表2。
表2 KJ041管脚说明
Table2  Explanation on KJ041 base pin
功能          输入        控制   地  空          输出         +V
脚号    1  2  3  4  5   6   7     8    9  10  11  12  13 14 15  16
电参数:(1)电源电压:直流+15V、-15V,允许波动±5%(10%时功能正常)。(2)电源电流:≤20 mA。(3)输出脉冲:①最大输出能力20 mA(输出脉冲电流)。②幅度≥13V(负载50 )。(4)输入端二极管反压:≥30V。(5)控制端正向电流:≤±8mA。
2.5 KJ042脉冲列调制形成器
KJ042脉冲列调制形成器主要适用于作可控硅三相桥式全控整流电路的脉冲列调制源,同样也适用于三相半控、单相全控、单相半控线路中作脉冲列调制源。电路具有脉冲占空比可调性好、频率调节范围宽、触发脉冲上升沿可与同步调制信号同步等优点。KJ042电路也可作为可控制的方波发生器,用于其他的电子线路中。
电路工作原理  KJ042原理和应用实例,以三相全控桥式电路为例,来自3块触发器(KJ004或KJ009)13端的脉冲信号分别送入KJ042电路的2、4、12端,由T1、T2、T3进行节点逻辑组合T5、T6、T8组成一个环形振荡器,由T4的集电极输出来控制环形振荡器的起振和停振。当没有输入脉冲时,T4导通,振荡器停振。反之,T4截止,振荡器起振。集电极输出是一系列与来自三相六个触发脉冲的前沿同步间隙60°有脉冲。经4T7倒相放大分别送入3块触发器(KJ004或KJ009的14端)。此时从KJ004或KJ009电路的1端和15端输出是调制后的脉冲列触发脉冲,调制脉冲的频率由外接电容4C16、4C17和4R34、4R35、4D7决定。
改变4R34、4R35的比例可以得到满意的调制脉冲占空比。如将KJ042电路用于单相整流电路中2、4、12脚3个输入端只需用1个。其他两个接低电位(OV)。
KJ042管脚说明及电参数列于表3
               表3 KJ042管脚说明
Table3  Explanation on KJ042 base pin
功能
B相输入
C相
输入
振荡
反馈
输出
环行
振荡
反馈
A相
输入
+V
脚号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
电参数:(1)电源电压:直流+15V,允许波动±5%(10%时功能正常)。(2)电源电流:≤20mA。(3)输入端二极管反压:≥30V。(4)输入端正向电流≤20mA。(5)输出脉冲,①幅度≥13V。②最大输出能力12mA。(6)调制脉冲频率5-10KHZ(通过调节外接R、C达到)。(7)使用环境温度为四级:C:0~70℃ R:-40~85℃ E:-55~85℃  M:-55~125℃
KW-4调压板引线示意:
A1                              
1
2
3
4
5
6
7
8
脉冲输出
24V
1
2
3
4
5
6
7
8
~15V同步
69
~18V
A2
A3
1
2
3
4
5
6
复位
~15V
A4
1
2
3
4
5
6
7
8
过滤取样
复位
A5
1
2
3
4
5
6
38#
N
给定信号
3稳压器的故障与排除
谐振式铁磁饱和稳压器的故障,主要用发射管灯丝电压表来判断。在灯丝电压表及其引线正常的情况下,出现读数异常、忽高忽低,或随电网波动很历害时,多数情况是稳压器出了故障。
稳压器谐振电容器损坏是输出电压变值最常见的故障。漏油是谐振电容器的一种故障。电容器的一种故障。电容器本体上油污严重,就可以判断有电容器漏油了。
漏油常发生在运行时刻。停电以后,由于温升消失,漏油也就停止。所以很不容易断定故障的确切部位。这就必须将电容器逐一卸下,一个一个地检查,找出漏油点。最好将漏油的电容器换掉。如能将漏油处焊住,则还能运行。
漏油故障是由于电容器封闭不严、油质不好或超过无功功率定额运行而引起的。稳压器工作时,谐振回路的无功功率很大。由于存在灰尘,常使绝缘电阻下降。谐振电容器多为并联运行,有时还将多个电容器紧固在一起,造成散热困难。显著的温升使绝缘下降,体积膨胀,当膨胀力足以使铁壳产生裂缝时,就会往外流油。绝缘油质不好,杂质超过规定含量,这些杂质在强电场中被电解,引起体积增大,容易引起膨胀甚至击穿。
为了改善这种状况,要求谐振电容器通风要好,以利于散发热量。谐振电容器的无功功率应大于实际振荡回路储存的能量,如裕度不够,也容易引起膨胀或击穿。
一般说来,谐振电容器外壳变形,产生漏油,不致于立即使稳压器的稳压性能变坏到明显的程度。谐振电容器一旦击穿,破坏了稳压器的工作性能,输出电压就要大大下降。如果电容击穿后造成短路,谐振绕组立即严重发热、或者烧毁。个别电容器断路,电容量下降,谐振回路的阻抗急剧减小,使输出电压下降。
—摘自《热处理》(2008,No.2)

现在站在什么地方不重要,重要的是你往什么方向移动。
回复

使用道具 举报

签到天数: 453 天

[LV.9]以坛为家II

92

主题

3071

回帖

9462

积分

热处理高工

积分
9462
发表于 2013-2-28 10:21:50 | 显示全部楼层
感觉一点也不基础,很专业
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
 楼主| 发表于 2013-2-28 10:26:30 | 显示全部楼层
tom 发表于 2013-2-28 10:21
感觉一点也不基础,很专业

       内容比较老旧。似乎现在的新型感应加热装置,其结构完全不同于这种传统式的
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 1964 天

[LV.Master]伴坛终老

839

主题

7682

回帖

3万

积分

超级版主

积分
35968
QQ
发表于 2013-3-1 14:13:43 | 显示全部楼层
本帖最后由 龟山淬火 于 2013-3-1 14:21 编辑

Induction Heating
Induction heating is a totally electronic, non-contact method of "inducing" heat into an electrically conductive material using a high frequency alternating current run through an electromagnet. Its benefits are numerous over traditional methods of heating like flame and furnace. On this page I will explain the theory (in a very basic, introductory level) and some applications of induction heating, with a primary focus on its use in reloading for annealing cartridge cases. To understand the theory behind induction heater technology you should have a firm understanding of basic electrical theory, otherwise this page may sound mostly like jargon.

Induction heating can have its roots traced all the way back to the mid 1800's when Faraday first developed the transformer. A transformer works in a very similar way to this type of heater, and shares many of the same basic principles. Early on engineers noticed that transformers became quite hot while in use, some sought to utilize that heat instead of eliminate it. In the 1920's the first true induction heater came out in the form of a furnace made by EFCO. Several other companies were also experimenting at that time with induction heating for use in surface hardening of engine parts. World War II brought about huge advances in this technology as the search for more efficient and faster manufacturing processes was relentless.

The technology required for this task has progressed steadily since World War II as electronics have become more powerful, smaller, and more durable. Much of the components in the heater's circuitry is very similar to that used in radio broadcasting equipment, so as that industry has advanced these heaters have benefited with both parts and technology. Although still primarily used in large scale commercial industries, induction heaters have recently found their way into many smaller factories, auto and body repair shops, glass companies and maybe soon your own reloading bench.

All induction heater have several basic components including a power supply, frequency generator, and work coil. Below is a picture of the very simple induction heater I currently use to anneal my cases with labels on each of the major parts. This picture was taken with the heater out of its case so you can see each of the components.

Induction HeatingInduction heating is a totally electronic, non-contact method of "inducing" heat into an electrically conductive material using a high frequency alternating current run through an electromagnet. Its benefits are numerous over traditional methods of heating like flame and furnace. On this page I will explain the theory (in a very basic, introductory level) and some applications of induction heating, with a primary focus on its use in reloading for annealing cartridge cases. To understand the theory behind induction heater technology you should have a firm understanding of basic electrical theory, otherwise this page may sound mostly like jargon.
Induction heating can have its roots traced all the way back to the mid 1800's when Faraday first developed the transformer. A transformer works in a very similar way to this type of heater, and shares many of the same basic principles. Early on engineers noticed that transformers became quite hot while in use, some sought to utilize that heat instead of eliminate it. In the 1920's the first true induction heater came out in the form of a furnace made by EFCO. Several other companies were also experimenting at that time with induction heating for use in surface hardening of engine parts. World War II brought about huge advances in this technology as the search for more efficient and faster manufacturing processes was relentless.
The technology required for this task has progressed steadily since World War II as electronics have become more powerful, smaller, and more durable. Much of the components in the heater's circuitry is very similar to that used in radio broadcasting equipment, so as that industry has advanced these heaters have benefited with both parts and technology. Although still primarily used in large scale commercial industries, induction heaters have recently found their way into many smaller factories, auto and body repair shops, glass companies and maybe soon your own reloading bench.
All induction heater have several basic components including a power supply, frequency generator, and work coil. Below is a picture of the very simple induction heater I currently use to anneal my cases with labels on each of the major parts. This picture was taken with the heater out of its case so you can see each of the components.


                               
登录/注册后可看大图

Each of these major parts has a very important role to play in the operation of an induction heater.


  • The power supply takes the line voltage and changes it to the individual heaters needs, it also delivers the power only when the heater needs to be turned on (and in the correct order of things that need to be powered up). The heater in this photograph needs both 12v power for the control side of the circuit and straight 120v power to actually run the heater. If a heater has an adjustable power output it is likely controlled by changing the amount of voltage and current available to the heater.
  • The frequency generator is where the magic really happens. This component turns the line voltage into a high frequency, high amperage, alternating current. Exactly what frequency and what current depend on the rest of the circuit including the transformer (if any), the work coil, and the work piece. This heater automatically ranges for the optimum current and frequency. Some heaters (like this one) use a transformer to change the volatge and current delivered to the work coil for more favorably heating characteristics. This transformer also helps to protect the frequency generator from any voltage spikes that are produced.
  • The work coil is the last piece of the puzzle. It uses the high frequency current from the other components and heats the work piece, in our case, the cartridge cases.

The basic theory behind an induction heater is almost exactly the same as a transformer. In a transformer an alternating current from a power supply flows through a coil of wire (called the primary coil) wrapped around some form of core. The a/c current flows through the primary coil at a frequency optimized for the design. This creates a rapidly expanding and contracting magnetic field around the primary coil (called magnetic flux). In a transformer that magnetic flux is used to induce a current (see this Wikipedia page on Faraday's Law of Induction) into another coil of wire (called a secondary coil) wrapped around the same core as the primary coil. The secondary coil is connected to another circuit with different power needs than the primary coil's power supply.

                               
登录/注册后可看大图

An induction heater is very similar to a transformer, except it doesn't have a secondary coil or core for the primary coil. Instead, the object or work piece you are trying to heat (it must be electrically conductive) becomes the core that the magnetic flux is focused on. The work piece is placed inside of the primary coil (called a work coil for induction heaters). This turns the object you are trying to heat into a one turn shorted secondary. Heat builds very quickly in a circuit with an electrical short present as the only limit to the amount of current that can flow is the amount of current induced by the work coil. This "short circuit" is the primary reason that we get heat from an induction heater.
That is about as simply as I can explain this type of heater, but it leaves many things out. Here are some other things about induction heating that are of necessity to understanding the basic operation:


  • Power of the heater- The heater's power is directly related to how much current is put through the work coil and at what frequency. A higher current will produce a stronger magnetic field, and therefore will induce more current into the work piece. Induction heaters are available at power levels ranging from 100w or less through 800Kw and more. The heaters best suited for use in induction annealing cartridge cases are in the 800-2000 Watt range (I use and highly recommend the Roy 2.2 from Fluxeon, it works like a champ! It's also one of the most affordable heaters available and the guys at Fluxeon are great to work with.).
  • Frequency of the heater- Different frequencies are best suited to different heating tasks. Generally speaking, lower frequencies (1khz-30khz) penetrate large objects better than higher frequencies. High frequencies are best suited to shallow heating or small objects. Since our cartridge cases are small in diameter and thin at the neck we need a fairly high frequency. The frequencies used for annealing our cartridge cases are best around 60-100khz (which is right where Fluxeon's Roy 2.2 operates). One last note on frequencies, as the temperature of the object increases, the optimum frequency will also change. A good induction heater must be able to cope with and adjust for those changes. Work coil design and work piece material will also change optimum frequency.
  • Work coil design- In order to achieve the highest efficiency from a heater the work coil must be of the correct shape. Generally a work coil should be wound so it is close to the work piece to minimize any losses. I have also found that work coils work best if the work piece fits inside of them, instead of along the side or on the exterior. The number of turns of wire in a work coil will have a significant effect on the amount of heat produced in the work piece.
    Work coils can be in nearly any shape from "O" to "U" and anything in between. Certain designs will work much better than others depending on the shape and material of the object being heated. Brass cartridge cases are difficult to heat with an induction heater for a few reasons (detailed below). Because of this difficulty the only work coil design I have been able to make work well is a simple "O" with an inside diameter close to size of my case neck. All other designs I have tried suffer from losing too much of the magnetic flux.
    Because the work coil sees so much current from the power supply and heat from the work piece, it is often necessary to cool the work coil. This is typically done in commercial applications via a liquid (usually water or antifreeze). The work coil is thus frequently made from a copper tubing. I originally got started using a 16 gauge piece of solid copper wire, and although it worked well for me it frequently over heated. Sometimes it even got all the way to white hot. This happens very quickly due to the large amount of heat produced. If you attempt to try induction annealing for any length of time I encourage you to cool your work coil.
  • Work piece material- Earlier, in my description of how one of these heaters work, I mentioned that the object you are trying to heat must conduct electricity. That is true, however, the better it conducts electricity the more difficult it is to heat with an induction heater. The reason has to do with how the magnetic flux induces heat and gets to be pretty technical. We don't need to go into all of that theory for this page. Suffice it to say that because brass is such a good conductor, cartridge cases are tricky to heat via induction. Steel is much easier to heat because it is more resistant to the flow of electricity.
    One other thing to mention here. A magnetic work piece will heat much faster than a non-magnetic work piece up to the curie point (when it loses it's magnetic properties). The theory here is called hysteresis, and once again it doesn't work in our favor for brass cartridge cases since they are not magnetic.

You should now have a pretty good basic understanding of how induction heating works. There are a lot more theories that can be applied to the technical details, but we'll leave those to the engineers...
As you may have guessed, because this type of heating is all electronic we can exhibit a great deal of control over the process. Variations in work coil design, power input, frequency, and the amount of time the heater is run all contribute to this control. The end result is some of the most precise localized heating available, and that is exactly what we want when we are annealing cartridge cases. This is what makes this process so appealing to us as reloaders. It is also why I have been working for a considerable amount of time to develop a fully automatic machine for induction annealing.
This page was edited for technical details by my friend John DeArmond, engineer for Fluxeon.





Each of these major parts has a very important role to play in the operation of an induction heater.

•The power supply takes the line voltage and changes it to the individual heaters needs, it also delivers the power only when the heater needs to be turned on (and in the correct order of things that need to be powered up). The heater in this photograph needs both 12v power for the control side of the circuit and straight 120v power to actually run the heater. If a heater has an adjustable power output it is likely controlled by changing the amount of voltage and current available to the heater.
•The frequency generator is where the magic really happens. This component turns the line voltage into a high frequency, high amperage, alternating current. Exactly what frequency and what current depend on the rest of the circuit including the transformer (if any), the work coil, and the work piece. This heater automatically ranges for the optimum current and frequency. Some heaters (like this one) use a transformer to change the volatge and current delivered to the work coil for more favorably heating characteristics. This transformer also helps to protect the frequency generator from any voltage spikes that are produced.
•The work coil is the last piece of the puzzle. It uses the high frequency current from the other components and heats the work piece, in our case, the cartridge cases.

The basic theory behind an induction heater is almost exactly the same as a transformer. In a transformer an alternating current from a power supply flows through a coil of wire (called the primary coil) wrapped around some form of core. The a/c current flows through the primary coil at a frequency optimized for the design. This creates a rapidly expanding and contracting magnetic field around the primary coil (called magnetic flux). In a transformer that magnetic flux is used to induce a current (see this Wikipedia page on Faraday's Law of Induction) into another coil of wire (called a secondary coil) wrapped around the same core as the primary coil. The secondary coil is connected to another circuit with different power needs than the primary coil's power supply.


An induction heater is very similar to a transformer, except it doesn't have a secondary coil or core for the primary coil. Instead, the object or work piece you are trying to heat (it must be electrically conductive) becomes the core that the magnetic flux is focused on. The work piece is placed inside of the primary coil (called a work coil for induction heaters). This turns the object you are trying to heat into a one turn shorted secondary. Heat builds very quickly in a circuit with an electrical short present as the only limit to the amount of current that can flow is the amount of current induced by the work coil. This "short circuit" is the primary reason that we get heat from an induction heater.

That is about as simply as I can explain this type of heater, but it leaves many things out. Here are some other things about induction heating that are of necessity to understanding the basic operation:

•Power of the heater- The heater's power is directly related to how much current is put through the work coil and at what frequency. A higher current will produce a stronger magnetic field, and therefore will induce more current into the work piece. Induction heaters are available at power levels ranging from 100w or less through 800Kw and more. The heaters best suited for use in induction annealing cartridge cases are in the 800-2000 Watt range (I use and highly recommend the Roy 2.2 from Fluxeon, it works like a champ! It's also one of the most affordable heaters available and the guys at Fluxeon are great to work with.).


•Frequency of the heater- Different frequencies are best suited to different heating tasks. Generally speaking, lower frequencies (1khz-30khz) penetrate large objects better than higher frequencies. High frequencies are best suited to shallow heating or small objects. Since our cartridge cases are small in diameter and thin at the neck we need a fairly high frequency. The frequencies used for annealing our cartridge cases are best around 60-100khz (which is right where Fluxeon's Roy 2.2 operates). One last note on frequencies, as the temperature of the object increases, the optimum frequency will also change. A good induction heater must be able to cope with and adjust for those changes. Work coil design and work piece material will also change optimum frequency.


•Work coil design- In order to achieve the highest efficiency from a heater the work coil must be of the correct shape. Generally a work coil should be wound so it is close to the work piece to minimize any losses. I have also found that work coils work best if the work piece fits inside of them, instead of along the side or on the exterior. The number of turns of wire in a work coil will have a significant effect on the amount of heat produced in the work piece.
Work coils can be in nearly any shape from "O" to "U" and anything in between. Certain designs will work much better than others depending on the shape and material of the object being heated. Brass cartridge cases are difficult to heat with an induction heater for a few reasons (detailed below). Because of this difficulty the only work coil design I have been able to make work well is a simple "O" with an inside diameter close to size of my case neck. All other designs I have tried suffer from losing too much of the magnetic flux.
Because the work coil sees so much current from the power supply and heat from the work piece, it is often necessary to cool the work coil. This is typically done in commercial applications via a liquid (usually water or antifreeze). The work coil is thus frequently made from a copper tubing. I originally got started using a 16 gauge piece of solid copper wire, and although it worked well for me it frequently over heated. Sometimes it even got all the way to white hot. This happens very quickly due to the large amount of heat produced. If you attempt to try induction annealing for any length of time I encourage you to cool your work coil.


•Work piece material- Earlier, in my description of how one of these heaters work, I mentioned that the object you are trying to heat must conduct electricity. That is true, however, the better it conducts electricity the more difficult it is to heat with an induction heater. The reason has to do with how the magnetic flux induces heat and gets to be pretty technical. We don't need to go into all of that theory for this page. Suffice it to say that because brass is such a good conductor, cartridge cases are tricky to heat via induction. Steel is much easier to heat because it is more resistant to the flow of electricity.
One other thing to mention here. A magnetic work piece will heat much faster than a non-magnetic work piece up to the curie point (when it loses it's magnetic properties). The theory here is called hysteresis, and once again it doesn't work in our favor for brass cartridge cases since they are not magnetic.


You should now have a pretty good basic understanding of how induction heating works. There are a lot more theories that can be applied to the technical details, but we'll leave those to the engineers...

As you may have guessed, because this type of heating is all electronic we can exhibit a great deal of control over the process. Variations in work coil design, power input, frequency, and the amount of time the heater is run all contribute to this control. The end result is some of the most precise localized heating available, and that is exactly what we want when we are annealing cartridge cases. This is what makes this process so appealing to us as reloaders. It is also why I have been working for a considerable amount of time to develop a fully automatic machine for induction annealing.

This page was edited for technical details by my friend John DeArmond, engineer for Fluxeon.

人之心胸,多欲则窄,寡欲则宽。
回复

使用道具 举报

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
 楼主| 发表于 2013-3-1 14:23:54 | 显示全部楼层
龟山淬火 发表于 2013-3-1 14:13
Induction Heating
Induction heating is a totally electronic, non-contact method of "inducing" heat i ...

       俗话说,洋鬼子看戏——傻眼了

       这些洋文,咱老孤也是睁眼瞎子啊
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 1964 天

[LV.Master]伴坛终老

839

主题

7682

回帖

3万

积分

超级版主

积分
35968
QQ
发表于 2013-3-1 14:44:28 | 显示全部楼层
孤鸿踏雪 发表于 2013-3-1 14:23
俗话说,洋鬼子看戏——傻眼了

       这些洋文,咱老孤也是睁眼瞎子啊 ...

把你的资料翻成英文了,让假洋鬼子看的。
人之心胸,多欲则窄,寡欲则宽。
回复

使用道具 举报

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
 楼主| 发表于 2013-3-1 14:53:48 | 显示全部楼层
龟山淬火 发表于 2013-3-1 14:44
把你的资料翻成英文了,让假洋鬼子看的。

     假洋鬼子看中文还需要翻译成洋文?您提供的洋文内容,难道是我主题附件内容吗?
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 1964 天

[LV.Master]伴坛终老

839

主题

7682

回帖

3万

积分

超级版主

积分
35968
QQ
发表于 2013-3-1 14:57:10 | 显示全部楼层
相近,感应淬火的基本知识,同时,可以让大家学习一下英文,这是外国人写的。
人之心胸,多欲则窄,寡欲则宽。
回复

使用道具 举报

签到天数: 1059 天

[LV.10]以坛为家III

1804

主题

2万

回帖

9万

积分

热处理元老

品牌工程师

积分
91546
QQ
 楼主| 发表于 2013-3-1 15:13:10 | 显示全部楼层
龟山淬火 发表于 2013-3-1 14:57
相近,感应淬火的基本知识,同时,可以让大家学习一下英文,这是外国人写的。 ...

       最好能提供一个中译版本,因为这里的语言环境还是汉语
该会员没有填写今日想说内容.
回复

使用道具 举报

签到天数: 1964 天

[LV.Master]伴坛终老

839

主题

7682

回帖

3万

积分

超级版主

积分
35968
QQ
发表于 2013-3-1 19:37:47 | 显示全部楼层
本帖最后由 龟山淬火 于 2013-3-1 19:44 编辑


Induction Heating
Highest Performance, Efficiency and Reliability in IGBTs
Being the market leader in IGBTs, we offer a comprehensive, high performance portfolio of 600V discrete IGBTs for resonant-switching applications like induction heating cooktops. The portfolio has been developed to provide benchmark performance in terms of switching and conduction losses, which ensures best-in-class efficiency and fast time to market.


The new IHW40N60RF and HighSpeed 3 family have been added to address high speed switching topologies where switching losses have been optimized. These devices provide excellent performance over temperature and ensure up to 20% lower switching losses compared to competitor device





人之心胸,多欲则窄,寡欲则宽。
回复

使用道具 举报

该用户从未签到

0

主题

2

回帖

11

积分

热处理新手

积分
11
发表于 2013-9-3 15:02:05 | 显示全部楼层
第一次回帖~
回复

使用道具 举报

签到天数: 304 天

[LV.8]以坛为家I

9

主题

357

回帖

1741

积分

热处理工程师

积分
1741
发表于 2013-9-3 16:03:28 | 显示全部楼层
谢谢楼主提供学习的好机会,谢谢了!
回复

使用道具 举报

签到天数: 13 天

[LV.3]偶尔看看II

0

主题

23

回帖

70

积分

热处理学徒

积分
70
发表于 2013-10-21 18:50:48 | 显示全部楼层
很好的基础资料,谢谢
回复

使用道具 举报

签到天数: 165 天

[LV.7]常住居民III

2

主题

209

回帖

1233

积分

热处理工程师

积分
1233
发表于 2017-4-7 14:58:11 | 显示全部楼层
我们单位没有感应热处理,下载下来了解一下、谢谢楼主
奥利给
回复

使用道具 举报

本版积分规则

QQ|Archiver|手机版|小黑屋|热处理之家 ( 湘ICP备16021836号 )公安部备案号:43010302000896

GMT+8, 2024-5-20 02:04 , Processed in 0.167959 second(s), 36 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表